Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38203800

RESUMEN

Tendinopathy (TP) is a complex clinical syndrome characterized by local inflammation, pain in the affected area, and loss of performance, preceded by tendon injury. The disease develops in three phases: Inflammatory phase, proliferative phase, and remodeling phase. There are currently no proven treatments for early reversal of this type of injury. However, the metabolic pathways of the transition metabolism, which are necessary for the proper functioning of the organism, are known. These metabolic pathways can be modified by a number of external factors, such as nutritional supplements. In this study, the modulatory effect of four dietary supplements, maslinic acid (MA), hydroxytyrosol (HT), glycine, and aspartate (AA), on hepatic intermediary metabolism was observed in Wistar rats with induced tendinopathy at different stages of the disease. Induced tendinopathy in rats produces alterations in the liver intermediary metabolism. Nutraceutical treatments modify the intermediary metabolism in the different phases of tendinopathy, so AA treatment produced a decrease in carbohydrate metabolism. In lipid metabolism, MA and AA caused a decrease in lipogenesis at the tendinopathy and increased fatty acid oxidation. In protein metabolism, MA treatment increased GDH and AST activity; HT decreased ALT activity; and the AA treatment does not cause any alteration. Use of nutritional supplements of diet could help to regulate the intermediary metabolism in the TP.


Asunto(s)
Enfermedades Musculoesqueléticas , Ácido Oleanólico/análogos & derivados , Alcohol Feniletílico/análogos & derivados , Tendinopatía , Ratas , Animales , Ratas Wistar , Suplementos Dietéticos , Metabolismo de los Lípidos , Tendinopatía/etiología , Ácido Aspártico
2.
Molecules ; 27(7)2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35408740

RESUMEN

There is currently a worldwide consensus and recognition of the undoubted health benefits of the so-called Mediterranean diet, with its intake being associated with a lower risk of mortality. The most important characteristics of this type of diet are based on the consumption of significant amounts of fruit, vegetables, legumes, and nuts, which provide, in addition to some active ingredients, fiber and a proportion of vegetable protein, together with extra virgin olive oil (EVOO) as the main sources of vegetable fat. Fish and meat from poultry and other small farm animals are the main sources of protein. One of the main components, as already mentioned, is EVOO, which is rich in monounsaturated fatty acids and to a lesser extent in polyunsaturated fatty acids. The intake of this type of nutrient also provides an important set of phytochemicals whose health potential is widely spread and agreed upon. These phytochemicals include significant amounts of anthocyanins, stilbenes, flavonoids, phenolic acids, and terpenes of varying complexities. Therefore, the inclusion in the diet of this type of molecules, with a proven healthy effect, provides an unquestionable preventive and/or curative activity on an important group of pathologies related to cardiovascular, infectious, and cancerous diseases, as well as those related to the metabolic syndrome. The aim of this review is therefore to shed light on the nutraceutical role of two of the main phytochemicals present in Olea europaea fruit and leaf extracts, polyphenols, and triterpenes, on healthy animal growth. Their immunomodulatory, anti-infective, antioxidant, anti-aging, and anti-carcinogenic capabilities show them to be potential nutraceuticals, providing healthy growth.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Olea , Triterpenos , Animales , Antocianinas/análisis , Antiinfecciosos/análisis , Antiinfecciosos/farmacología , Antineoplásicos/análisis , Antioxidantes/química , Suplementos Dietéticos , Frutas/química , Olea/química , Aceite de Oliva/química , Fitoquímicos/análisis , Extractos Vegetales/química , Polifenoles/química , Triterpenos/análisis , Triterpenos/farmacología , Verduras
3.
Molecules ; 25(18)2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32947962

RESUMEN

Natural products have a significant role in the development of new drugs, being relevant the pentacyclic triterpenes extracted from Olea europaea L. Anticancer effect of uvaol, a natural triterpene, has been scarcely studied. The aim of this study was to understand the anticancer mechanism of uvaol in the HepG2 cell line. Cytotoxicity results showed a selectivity effect of uvaol with higher influence in HepG2 than WRL68 cells used as control. Our results show that uvaol has a clear and selective anticancer activity in HepG2 cells supported by a significant anti-migratory capacity and a significant increase in the expression of HSP-60. Furthermore, the administration of this triterpene induces cell arrest in the G0/G1 phase, as well as an increase in the rate of cell apoptosis. These results are supported by a decrease in the expression of the anti-apoptotic protein Bcl2, an increase in the expression of the pro-apoptotic protein Bax, together with a down-regulation of the AKT/PI3K signaling pathway. A reduction in reactive oxygen species (ROS) levels in HepG2 cells was also observed. Altogether, results showed anti-proliferative and pro-apoptotic effect of uvaol on hepatocellular carcinoma, constituting an interesting challenge in the development of new treatments against this type of cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Triterpenos/farmacología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Olea/química , Olea/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Extractos Vegetales/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Triterpenos/química
4.
Phytomedicine ; 23(12): 1301-1311, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27765349

RESUMEN

BACKGROUND: Metabolic syndrome is a set of pathologies among which stand out the obesity, which is related to the lipid droplet accumulation and changes to cellular morphology regulated by several molecules and transcription factors. Maslinic acid (MA) is a natural product with demonstrated pharmacological functions including anti-inflammation, anti-tumor and anti-oxidation, among others. PURPOSE: Here we report the effects of MA on the adipogenesis process in 3T3-L1 cells. METHODS: Cell viability, glucose uptake, cytoplasmic triglyceride droplets, triglycerides quantification, gene transcription factors such as peroxisome proliferator-activated receptor γ (PPARγ) and adipocyte fatty acid-binding protein (aP2) and intracellular Ca2+ levels were determined in pre-adipocytes and adipocytes of 3T3-L1 cells. RESULTS: MA increased glucose uptake. MA also decreased lipid droplets and triglyceride levels, which is in concordance with the down-regulation of PPARγ and aP2. Finally, MA increased the intracellular Ca2+ concentration, which could also be involved in the demonstrated antiadipogenic effect of this triterpene. CONCLUSION: MA has been demonstrated as potential antiadipogenic compound in 3T3-L1 cells.


Asunto(s)
Adipocitos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Olea/química , Triterpenos/farmacología , Células 3T3-L1 , Animales , Calcio/metabolismo , Supervivencia Celular/efectos de los fármacos , Proteínas de Unión a Ácidos Grasos/biosíntesis , Proteínas de Unión a Ácidos Grasos/genética , Glucosa/metabolismo , Ratones , PPAR gamma/genética , ARN/biosíntesis , ARN/genética , Triglicéridos/metabolismo , Triterpenos/química
5.
Artículo en Inglés | MEDLINE | ID: mdl-26236377

RESUMEN

Maslinic acid (MA) is a natural compound whose structure corresponds to a pentacyclic triterpene. It is abundant in the cuticular lipid layer of olives. MA has many biological and therapeutic properties related to health, including antitumor, anti-inflammatory, antimicrobial, antiparasitic, antihypertensive, and antioxidant activities. However, no studies have been performed to understand the molecular mechanism induced by this compound in melanoma cancer. The objective of this study was to examine the effect of MA in melanoma (B16F10) cells grown in the presence or absence of fetal bovine serum (FBS). We performed cell proliferation measurements, and the reactive oxygen species (ROS) measurements using dihydrorhodamine 123 (DHR 123) and activities of catalase, glucose 6-phosphate dehydrogenase, glutathione S-transferase, and superoxide dismutase. These changes were corroborated by expression assays. FBS absence reduced cell viability decreasing IC50 values of MA. The DHR 123 data showed an increase in the ROS level in the absence of FBS. Furthermore, MA had an antioxidant effect at lower assayed levels measured as DHR and antioxidant defense. However, at higher dosages MA induced cellular damage by apoptosis as seen in the results obtained.

6.
Cancer Lett ; 273(1): 44-54, 2009 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-18790561

RESUMEN

We have investigated the mechanisms of maslinic acid with regard to its inhibitory effects on the growth of HT29 colon-cancer cells. High concentrations of maslinic acid are present in the protective wax-like coating of olives. Our results show that treatment with maslinic acid results in a significant inhibition of cell proliferation in a dose-dependent manner and causes apoptotic death in colon-cancer cells. We found that it inhibits considerably the expression of Bcl-2 whilst increasing that of Bax; it also stimulates the release of mitochondrial cytochrome-c and activates caspase-9 and caspase-3. All these results point clearly to the activation of the mitochondrial apoptotic pathway in response to the treatment of HT29 colon-cancer cells with maslinic acid. Our results suggest that maslinic acid has the potential to provide significant natural defence against colon-cancer.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Mitocondrias/metabolismo , Olea/química , Extractos Vegetales/farmacología , Triterpenos/farmacología , Antineoplásicos/química , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/terapia , Citocromos c/metabolismo , Células HT29 , Humanos , Mitocondrias/efectos de los fármacos , Extractos Vegetales/química , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Triterpenos/química , Proteína X Asociada a bcl-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA